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ABSTRACT
This paper describes the development of a connectionist-hidden
Markov model (HMM) system for the 1997 DARPA Hub-4E CSR
evaluations. We describe both system development and the en-
hancements designed to improve performance on broadcast news
data. Both multilayer perceptron (MLP) and recurrent neural net-
work acoustic models have been investigated. We assess the effect
of using gender-dependent acoustic models, and the impact on per-
formance of varying both the number of parameters and the amount
of training data used for acoustic modelling. The use of context-
dependent phone models is described, and the effect of the number
of context classes is investigated. We also describe a method for
incorporating syllable boundary information during search. Results
are reported on the 1997 DARPA Hub-4E development test set. We
then describe theCU-CON evaluation system and report results on
the 1997 Hub-4E test set.

1. Introduction
This paper describes experiments aimed at improving the per-
formance of the ABBOT system on broadcast news data. AB-
BOT is a large vocabulary connectionist-HMM continuous
speech recognition system developed at Cambridge Univer-
sity Engineering Department [1]. The connectionist-HMM
approach uses an underlying hidden Markov process to model
the time-varying nature of the speech signal and a connection-
ist system to estimate the observation likelihoods within the
hidden Markov model framework [2].

The layout of this paper is as follows. We first describe
acoustic modelling experiments. The use of MLP acoustic
models is described, and results are reported for both gender-
independent and gender-dependent systems. Section 2.2 de-
scribes the use of recurrent neural network models. We exam-
ine the effect of both model size (in terms of the number of
model parameters) and the amount of training data on recog-
nition performance. The effect of the number of context-
dependent phone models is also investigated.

Section 3 describes a technique for incorporating syllable
boundary information during the decoding procedure. We
describe the method used to determine the syllable bound-
ary points in the training data, and how this is used to train
a syllable onset detector. The syllable boundary information
has been incorporated in the decoding procedure without the
need to modify the decoder, and the method by which this is

achieved is described.

TheCU-CON system which participated in the 1997 DARPA
Hub-4E evaluation is then described. This includes details of
the acoustic features and the acoustic and language models.
The two-pass recognition strategy employed by the system is
also outlined. Official results on the 1997 evaluation data are
then presented.

2. Acoustic Model Development
This section describes experiments aimed at assessing the
performance of a number of different acoustic models. Re-
sults are reported on an episode of NPR Marketplace recorded
on 12 July 1996 (this episode in denoted as k960712 in the
Hub-4E development test set). The language model used for
the experiments on acoustic modelling was developed for the
1996CU-CON system. Training data is the 132 million words
of broadcast news texts, plus the 1995 Hub-4 texts which con-
tain 108 million words and covers general North American
business news. A trigram language model and a 65,532 word
vocabulary were used for all the experiments.

2.1. MLP Acoustic Modelling

The MLP models used are fully connected with a single hid-
den layer consisting of 4000 logistic sigmoid units, and an
output layer with softmax units. A cross-entropy error crite-
rion is used during training, and this ensures that the model
outputs are estimates of thea posterioriprobability of phone
class given the acoustic data [3]. The input to the network
consists of nine contiguous frames of 12th order perceptual
linear prediction (PLP) coefficients plus log energy. The net-
works are trained using back-propagation and gradient de-
scent. The gradient descent learning rate is adapted during
training based on the cross-validation error. Learning pro-
ceeds with the initial (empirically set) learning rate. When
the decrease in cross-validation error falls below a threshold
the learning rate is reduced by a factor of two. This continues
after each iteration. When the decrease in cross-validation er-
ror again falls below a threshold the learning rate is set to zero
and training is stopped [4].

We looked at both gender-independent and gender-dependent
acoustic modelling using MLPs. The mark up of the acous-
tic training data includes gender tags, and these were used to



Focus Gender Ind. Gender Dep.
Condition Model Models

F0 24.0 25.3
F1 37.8 42.3
F2 38.2 43.6
F3 40.4 44.2
F4 38.5 41.8
F5 34.9 42.7
FX 65.0 66.3

OVERALL 32.7 35.5

Table 1: Word error rates by focus conditions for both gender
independent and gender dependent MLP acoustic models.

produce training sets for male and female speakers. The se-
lection of the gender at recognition time was based on the log
likelihood of the decoded utterances. All the test data was de-
coded using both the male and female acoustic models, and
the decoded utterance with the highest log likelihood selected
to form the final system output. The results are shown in Ta-
ble 1, and as can be seen the gender independent system per-
forms better than the gender dependent system. This may be
due to the relatively small (30%) proportion of training data
from female speakers.

2.2. RNN Acoustic Modelling

In this section we report results for both context-independent
and context-dependent recurrent neural network (RNN)
acoustic models [5]. The first set of experiments examine the
effect of both the size of the acoustic model and the amount of
training data. Table 2 shows results for a model with 256 state
units (83700 parameters) trained on 35 hours of data (denoted
Model 1), and a model with 384 state units (174324 param-
eters) trained on 60 hours of data (denoted Model 2). It can
be seen that increasing the model size and the training data
results in an 8.2% relative reduction in word error rate.

Focus Model 1 Model 2
Condition (84k params) (174k params)

F0 25.4 22.5
F1 41.8 38.4
F2 38.2 43.6
F3 44.7 39.2
F4 38.2 32.1
F5 31.8 33.3
FX 61.8 63.4

OVERALL 34.3 31.5

Table 2: Word error rates by focus conditions for RNN acous-
tic models with different numbers of parameters.

Comparing the results from Tables 1 and 2 shows that
there is little difference in performance between the gender-
independent MLP system, and a system using an RNN acous-
tic model (Model 2). Indeed, the performance difference be-
tween the two systems is not significant atp < 0:051. How-
ever, the MLP acoustic model has four times the number of
parameters of the RNN model.

Focus CI Number of CD phone models
Condition System 589 697 792 1002

F0 22.5 20.1 19.9 20.5 21.2
F1 38.4 34.6 33.7 35.5 34.5
F2 43.6 45.5 40.0 39.1 43.6
F3 39.2 32.2 31.4 28.8 31.2
F4 32.1 30.9 31.2 29.7 29.4
F5 33.3 35.4 34.4 34.9 37.5
FX 63.4 63.8 60.6 61.0 63.4

OVERALL 31.5 28.9 28.2 28.5 29.2

Table 3: Word error rates by focus conditions for different
numbers of context-dependent phone models.

We have also investigated the effect on word error rate of
the number of word-internal context-dependent phone mod-
els used. A brief description of context-dependent phone
modelling in the ABBOT system is given in Section 4.3. Ta-
ble 3 shows results for systems with different numbers of
context-dependent phone models. It can be seen that the
number of context-dependent models has only a small ef-
fect on recognition performance. The differences between
each of the context-dependent systems are not significant at
p < 0:05. However, introducing context-dependent mod-
els provides a significant (atp < 0:05) improvement over
a context-independent system.

3. Incorporating Syllable Boundary
Information

This section reports experiments aimed at improving recog-
nition accuracy by incorporating syllable boundary informa-
tion during search. Previous research on detecting syllable
boundaries and using this information to improve recognition
accuracy has been reported [7, 8]. In this work we use the
method of Wuet al [7].

3.1. Detecting Syllable Boundaries

The broadcast news training data does not include syllable
boundary or phonetic alignment information. An automatic
procedure for determining syllable boundaries is therefore
required. The method used in this work is based on deriv-
ing syllable boundaries from phonetic alignments. The first

1Significance tests were performed using the two-tailed matched pairs
method described in [6]



step in determining the syllable boundaries is to produce pro-
nunciations with tagged syllable boundaries. Syllable tagged
pronunciations are required for every word in the training
data. This was done automatically using the NIST software
tsylb22. The first phone of each syllable is tagged as an on-
set phone. Viterbi forced alignment is then used to determine
phone alignments for the training data. These can be used
in conjunction with the syllable tagged lexicon to derive the
syllable onsets.

A single hidden layer, fully connected MLP with 500 hid-
den units was trained to estimate the probability that a given
frame is a syllable onset. The input to this MLP consists if 9
contiguous frames of PLP features. For the purposes of train-
ing, the syllable onsets were represented as a series of four
frames, with the initial frame corresponding to the actual on-
set derived from the phonetic alignments.
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Figure 1: Example of the output of the syllable onset detector
for the utterance “what impact did that”. The vertical lines
are the syllable onsets as derived from Viterbi aligned phone
labels.

A simple numeric threshold applied to the probability esti-
mates generated by the neural network determined the iden-
tification of any frame as a syllable onset. This method cor-
rectly detected 92% of the onsets derived from the phonetic
alignments. However, this method also detected syllable on-
sets where there were none in 30% of frames outside the four-
frame window defined for training. This effect can be seen in
Figure 1 which shows an example of the neural network out-
put. The width of the onsets detected tends to be much wider
than the four-frame window used during training.

2The actual syllabification of the lexicon was done by Eric Fosler, of the
International Computer Science Institute.

3.2. Syllable based Decoding

The NOWAY [9, 10] stack decoder was used to incorporate
syllable boundary information in the decoding process. The
context-independent phones may occur both at a syllable on-
set, or not directly after the syllable onset. This can be seen in
the example pronunciation shown below in which the schwa
(ax) occurs both at the beginning of the first syllable, and as
the second phone of the last syllable. Phones that occur at
syllable onsets are tagged withon.

ABATEMENTS = f ax on bcl bon ey tcl mon ax n tcl sg

Therefore two phone models are required for each context
independent phone in the system, one model for when the
phone occurs at a syllable onset, and one when it does not.
The same acoustic model is used to generate the observation
probabilities for the syllable onset phones and the standard
(i.e.. not at syllable onsets) phones. This assumes that the re-
alisation of any particular phone is not affected by whether or
not it is the onset of a syllable. The observation probabilities
of the onset phone models are set to zero when no onset is
detected, and to those of the standard model when a syllable
onset is detected. This effectively means that the decoder can
only choose syllable onset phones when a syllable onset is de-
tected, and thus allows the incorporation of syllable boundary
information into a standard decoder.

Focus Standard CI + syllable
Condition CI system onset system

F0 22.5 21.1
F1 38.4 32.1
F2 43.6 40.0
F3 39.2 37.1
F4 32.1 31.5
F5 33.3 32.3
FX 63.4 59.3

OVERALL 31.5 28.8

Table 4: Word error rates by focus conditions for a context-
independent system, and a context-independent system incor-
porating syllable boundary information.

The results for context-independent systems with and with-
out syllable boundary information can be seen in Table 4. In-
corporating syllable onset information has reduced the word
error rate for each of the focus conditions, and resulted in an
overall reduction in word error rate of 8.6% (which is signifi-
cant atp < 0:05).

4. The CU-CON Evaluation System
This section describes theCU-CON system used for the 1997
Hub-4E evaluation. This includes a description of the audio



segmentation, the front-end, the acoustic and language mod-
els, and the recognition procedure. The results on the devel-
opment data presented in Sections 2 and 3 led to a number
of decisions when designing the evaluation system. Firstly,
although the performance of MLP and RNN acoustic mod-
els is similar, RNN models are more compact and context-
dependent models are quick to construct. We therefore de-
cided to use RNN acoustic models. Secondly, it was decided
not to use syllable boundary information because initial ex-
periments with a context-dependent system suggested that lit-
tle or no gain was achieved.

4.1. Audio Segmentation

TheCU-CON system used tools provided by NIST to perform
audio segmentation. These tools implement the method of
Siegler et al. [11]. Means and variances are estimated for a
two second window placed at each point in the audio stream.
A Kullback-Liebler distance between successive windows is
then computed, and when this reaches a local maximum a
new segment boundary is marked. The tools also classify
the segments as either full or telephone bandwidth. This is
accomplished by building Gaussian mixture models for each
of the segments. Maximum likelihood selection of the class
given the segment is performed by comparing the segment
models to models trained on known bandwidth data. The
tools also perform clustering of the segments, but this was
not used by theCU-CON system.

4.2. Acoustic Feature Representation

Two sets of acoustic features are used by the 1997CU-CON

system:MEL+, a 20 channel mel-scaled filter bank with en-
ergy, degree of voicing, and pitch [12], andPLP, 12th order
cepstral coefficients derived using perceptual linear predic-
tion and log energy [13]. TheMEL+ andPLP features were
computed from 32 msec windows of the speech waveform ev-
ery 16 msec. To increase the robustness of the system to en-
vironmental conditions, the statistics of each feature channel
were normalised to zero mean with unit variance over each
segment.

4.3. Acoustic Modelling

The basic acoustic modelling system is a recurrent neural net-
work. The network maintains an internal state which provides
a mechanism for modelling acoustic context and the dynam-
ics of the acoustic signal. The output vector produced by the
RNN acoustic model is an estimate of thea posterioriproba-
bility of each of the phone classes, i.e.

yi(t) ' Pr(qi(t)ju
t+4
1

) (1)

whereqi(t) is statei at time t andut
1 = fu(1); : : : ;u(t)g

is the input from time1 to t. The training approach is based
on Viterbi training. Each frame of training data is assigned
a phone label based on an utterance orthography and the cur-
rent model. The recurrent network is then trained – using the

back-propagation-through-time algorithm [14] – to map the
input acoustic vector sequence to the phone label sequence.
The labels are then reassigned and the process iterates. A
more detailed description of the RNN architecture and the
training algorithm can be found in [5, 1].

As shown in Section 2.2 context-dependent phone models
lead to improved performance, and theCU-CON system uses
word-internal CD models. The context-dependent phone
models are chosen using a decision tree. The decision tree
is constructed using rules that are based on the left and right
contexts. A tree is grown for each monophone in the sys-
tem [15]. This allows for sufficient statistics for training
and keeps the system compact (allowing fast context train-
ing). The method used to implement CD phone models is
based on the factorisation of conditional context-class prob-
abilities [16]. The jointa posteriori probability of context
classj and phone classi is given by

yij(t) = yi(t)yjji(t): (2)

The RNN estimatesyi(t), and single-layer networks or “mod-
ules” are used to estimate the conditional context-class poste-
rior, yjji(t). The input to each module is the internal state of
the recurrent network, since it is assumed that the state vec-
tor contains all the relevant contextual information necessary
to discriminate between different context classes of the same
monophone.

4.4. Acoustic Model Training

Different acoustic model sets were used for wide-band and
telephone bandwidth data. A total of eight different acous-
tic models have been used. Four acoustic models have been
used for wide-band data. All the wide-band models use PLP
acoustic features, and estimate 697 word-internal context-
dependent phone probabilities. Training data is from the 104
hours of broadcast news data. In total this contains approxi-
mately 76 hours of transcribed data. The average log likeli-
hood per frame was computed during Viterbi alignment and
those segments with poor scores were not used for training.
This resulted in a total training set containing 60 hours of
data.

Model Parameters Data Segments Order
WB-1 174k All forward
WB-2 174k All backward
WB-3 84k F0+F1 forward
WB-4 84k F0+F1 backward

Table 5: Training data and model size for the wide-band
acoustic models.

The conditions for training the wide-band models are shown
in Table 5. Models were trained with the data presented both



forward and backward in time. This produces different acous-
tic models due to the fact that the RNN is time-asymmetric.
Models were also produced using just the baseline planned
studio speech (F0) and the spontaneous studio speech (F1)
(about 31 hours of data). It has been shown that a significant
performance improvement is achieved by merging multiple
recurrent networks [17]. The output of the four wide-band
models is merged in the log domain, i.e.

log yi(t) =
1

K

KX

k=1

log y
(k)

i (t)� Z (3)

whereZ is a constant chosen to insure thaty is a valid prob-
ability distribution.

Four acoustic models have also been used for telephone band-
width data. Each of the models estimate 604 word-internal
context-dependent phone probabilities. The training data was
taken from the 50 hours of broadcast news data released for
the 1996 Hub-4 evaluation. All the models have a total of
approximately 84k parameters. Forward and backward mod-
els were trained for bothPLP andMEL+ features. All models
were adapted to telephone bandwidth by mean of a linear in-
put network (LIN). LIN adaptation has been successfully ap-
plied to connectionist HMM systems for supervised speaker
adaptation [18], unsupervised speaker adaptation [19], and
unsupervised channel adaptation [20, 21]. A linear mapping
is created to transform the acoustic vector, and during recog-
nition this transformed vector is fed as input to the RNN.

The F2 data was marked as either having low or medium fi-
delity. As with the 1996 evaluation we reclassified all the F2
data into narrow or wide band data based on the power in the
upper 4kHz of the spectrum [22]. However, merely averaging
the power in the upper 4kHz of a segment would bias the clas-
sification due to the relative number of voiced and unvoiced
sections in a segment. To account for this we multiplied the
energy in the upper 4kHz of each frame by the estimated
probability of the frame representing an unvoiced segment.
We chose a threshold for the choice of narrow bandwidth and
full bandwidth by manually classifying a small proportion of
the F2 segments. After setting this threshold all the F2 seg-
ments were relabelled. A LIN was trained for each model on
the narrow bandwidth F2 data. These adapted models were
used on the evaluation data classified as narrow bandwidth.
As with the wide-band models the outputs of the telephone
bandwidth models were merged in the log domain.

4.5. Language Model and Lexicon

4-gram and trigram backoff language models were trained
from the LDC broadcast news training texts, the transcrip-
tions of the broadcast news training data, the 1995 non-
financial newswire (H4) texts, the 1995 financial newswire
(H3) texts, and the 1995 Marketplace training data transcrip-
tions. The language models were constructed using version

2.03 of the CMU-Cambridge SLM Toolkit. The Witten-Bell
discounting method was used for both the 4-gram and trigram
models. The language models contained 7.0 million bigrams,
24.1 million trigrams, and 4.7 million 4-grams.

The recognition lexicon contains 65,532 words, and was de-
veloped for the 1996 Hub-4 evaluation. Pronunciations for
training were generated using a technique in which known
pronunciations (from the LIMSI 1993 WSJ Lexicon) are seg-
mented to form letter to sound rules which are then used to
produce pronunciations for new words.

4.6. Recognition Procedure

In contrast to previous ABBOT systems the 1997CU-CON

system uses a two-pass recognition procedure. The first pass
uses a trigram language model and is used to produce lattices.
TheNOWAY stack decoder is used for this first pass. A stack
based lattice to n-best decoder is then used to produce 1-best
hypotheses from the lattices. A 4-gram language model is
used for this second pass. Note that no test set adaptation is
performed during either recognition pass.

4.7. Results

This section presents results on the 1997 Hub-4E evaluation
data. Table 6 shows the error rate of the system with a tri-
gram language model (the first pass), and a 4-gram language
model. As can be seen the use of a 4-gram language model
has reduced the overall word error rate by 3.2%, which is sig-
nificant atp < 0:001. The perplexity of the trigram language
model is 179, and 166 for the 4-gram model. The overall
out-of-vocabulary rate was 1.16%.

3-gram LM 4-gram LM
Substitutions 17.9 17.4
Deletions 5.9 5.6
Insertions 4.2 4.1
OVERALL WER 27.9 27.1

Table 6: Word error rates for theCU-CON evaluation system
with trigram and 4-gram language models.

The word error rate by focus condition is shown in Table 7.
The use of a 4-gram language model has reduced the error
rate for each of the focus conditions.

5. Future Work
We have examined the hypotheses produced by both context-
independent and context-dependent systems on the develop-
ment data on a per-segment basis. Initial results suggest that
although the overall error rate of the CD system is signifi-
cantly lower than the CI system, there are a relatively large
number of segments for which the CI system produces the



Word Error Rate
Focus No: Words 3-gram LM 4-gram LM

F0 13197 15.9 15.5
F1 6566 27.3 26.3
F2 4882 38.9 37.5
F3 1571 36.7 35.1
F4 3350 32.6 31.2
F5 669 25.3 25.7
FX 2599 59.6 59.1

OVERALL 32834 27.9 27.1

Table 7: Word error rates by focus condition.

most accurate hypothesis. This suggests that if the hypothe-
ses of the two systems could be combined in a suitable man-
ner the overall error rate could be reduced. We are currently
working on confidence based methods for combining the sys-
tem outputs.
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